vol. 41 2840—2845 (1968) BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN

Spectroscopic Studies of Catalysis by Vanadium Pentoxide

Kimio Tarama, Satohiro Yoshida, Shingo Ishida and Hideo Kakioka

Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto

(Received March 18, 1968)

The role of the V=O bond in V₂O₅ in the adsorption of several gases was studied by measuring the electron spin resonance (ESR) and the infrared (IR) spectra. The ESR spectra of V₂O₅ supported on γ -Al₂O₃ were similar to those of VOSO₄ on γ -Al₂O₃. When such electron-donating gases as CO, SO₂ and C₂H₄ were adsorbed on this V₂O₅ - γ-Al₂O₃, the signal intensity of ESR increased and the splitting of the h.f.s. became clear. Upon treatment with an electron-accepting gas such as O_2 , a reverse change was observed. In the case of V_2O_5 supported on SiO_2 , similar ESR spectra were observed by the adsorption of CO after a mild reduction. The IR spectra of V₂O₅ have a sharp absorption peak at 1023 cm⁻¹ due to the stretching vibration of the (V=O)³⁺ bond; this peak became broader by adsorption of such gases as CO and SO2. Simultaneously, the center of the peak shifted to the red region and a weak hump appeared at 980-990 cm⁻¹, probably due to (V=O)2+. These results of the ESR and IR measurements reveal that these electron-donating gases are adsorbed on the (V=O)3+ bonds on the surface of V₂O₅, and that the increase in electron densities in the adsorption sites results from adsorption of these gases. Furthermore, the role of this (V=O)3+ bond in oxidation reaction was also discussed.

Vanadium pentoxide is a well-known oxidation catalyst. There are fairly many works attempting to elucidate the catalytic action of this catalyst by kinetical studies or by studies of its physicochemical properties.

The present authors1) themselves previously reported a study of some physico-chemical properties of V2O5 and emphasized the importance of the role of the V=O bond, at the 3rd International Congress on Catalysis.

In the present work, the role of this V=O bond in the adsorption of several gases was studied by measuring the electron spin resonance (ESR) and the infrared (IR) spectra.

Recently, van Reijen and Cossee²⁾ studied the state of V4+ ions in V2O5 supported on SiO2 and Al₂O₃ by the ESR method and reported the existence of (VO₄)4- or (VO)2+. Ioffe et al.3) studied the change in the IR spectra of V2O5 by doping of MoO₃, CoO₂ or P₂O₅ and by treatment with a mixture of benzene and O2. But these papers were not very helpful for our purpose of elucidating the role of the V=O bond in the gas adsorption.

The present authors' results reveal that the (V=O)3+ bond on the surface of V2O5 plays an important role as the adsorption site for the electrondonating gas and also as a reaction site for the oxidation reaction.

Experimental

Apparatus and Procedures. The ESR absorption measurements were made on a JES-3BSX-type, X-band spectrometer manufactured by the Japan Electron Optics Co. The cavity input power was 10 mW, and the modulation width was 10 gauss. DPPH was used as the standard for the measurement of the intensity of the ESR signal.

The samples for ESR measurement were evacuated for 3 hr at 350°C and 10-6 Torr in a glass reactor which had a quartz tube for ESR measurement as a side arm and which was joined to a vacuum line. After various treatments, the samples were moved to the side tube and the ESR absorptions were measured at room temperature.

The infrared absorption measurements were carried out with an IR-S-type spectrometer manufactured by the Japan Spectroscopic Co. The samples dispersed on a NaCl disk were placed in the center of a specially devised in situ cell and the IR absorptions were measured under various atmospheres and temperatures.

The adsorbed amounts of gases were measured by the usual volumetric method.

The catalytic activities for CO oxidation with air were determined by a flow method described previously¹⁾ at 350°C. The gas flow rate was 7.5 cc (NTP)/min for 500 mg of the catalyst, and the ratio of CO to air was kept at 1:4.

Materials. Several kinds of V2O5 catalysts were used. The unsupported V₂O₅-powders used mainly for the IR measurements were prepared from commercial extra-pure-grade V₂O₅ by grinding it to powder. This sample contained about 0.7 atom% of V4+.

¹⁾ K. Tarama, S. Teranishi, S. Yoshida and N. Tamura, Proc. 3rd Int. Cong. Catalysis, Amsterdam (1965), p. 282.

²⁾ L. van Reijen and P. Cossee, Discussions Faraday Soc., 41, 277 (1966).
3) B. E. Zaitsev, S. I. Ezhkova and I. I. Ioffe, Kinetika i Kataliz, 7, 755 (1966).

The V_2O_5 -samples supported on γ -Al₂O₃ and SiO₂ were prepared by impregnation with an aqueous solution of extra-pure NH₄VO₃, followed by drying at 100°C and calcination at 450°C for 6 hr in a dry-air stream.

The γ -Al₂O₃ was a commercial product of the highest purity from the Sumitomo Chemical Ind. Co. The SiO₂ was prepared from ethyl silicate which had been carefully purified by distillation.

The surface areas of these samples are given in Table 1.

Table 1. The B.E.T. surface areas of the supported catalysts

V ₂ O ₅ Content (wt%)	Surface area (m²/g)
1 (on γ-Al ₂ O ₃)	170
3 (on γ -Al ₂ O ₃)	180
5 (on γ -Al ₂ O ₃)	180
20 (on γ -Al ₂ O ₃)	170
5 (on SiO ₂)	280

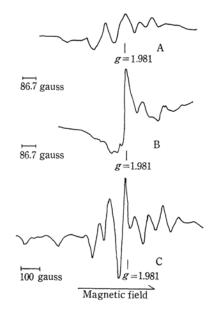


Fig. 1. ESR spectra of V₂O₅ - γ-Al₂O₃ after evacuation for 3 hr at 350°C.

 $\begin{array}{lll} A: & V_2O_5(5\%) - \gamma - Al_2O_3 \\ B: & V_2O_5(50\%) - \gamma - Al_2O_3 \\ C: & VOSO_4(0.6\%) - \gamma - Al_2O_3 \end{array}$

Results

ESR Spectra of V_2O_5 Dispersed on γ -Al₂O₃. Figures l-A and B show the ESR absorption spectra of the samples of 5 wt% and 50 wt% V_2O_5 respectively supported on γ -Al₂O₃. These spectra, with the h.f.s., were similar to that of VOSO₄ (0.6 wt%) on γ -Al₂O₃ (Fig. 1-C). The average h.f.s. coupling constants are 100 and 85 gauss for 5% V_2O_5 - γ -Al₂O₃ and VOSO₄- γ -Al₂O₃ respectively. These spectra with h.f.s. were identified as those of $(V=O)^{2+}$.

When CO, SO_2 or C_2H_4 was adsorbed on this 5% V_2O_5 - γ - Al_2O_3 at room temperature and at 150°C, the signal intensities of the ESR spectra increased, as is shown in Table 2; the splitting of the h.f.s. also became clear, as Figs. 2-A, B and C show. The adsorbed amounts of CO, SO_2 , and C_2H_4 (at room temperature, 200 Torr) were 0.5, 18 and 6 cc/g-cat respectively. The evacuation of gas at room temperature caused a decrease in the signal intensity, but this change was partially irreversible.

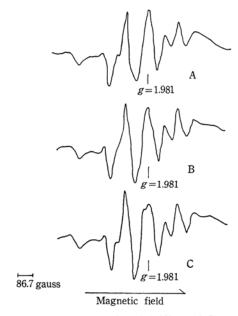


Fig. 2. ESR spectra of $V_2O_5(5\%) - \gamma - Al_2O_3$.

- A: SO₂ was adsorbed for 40 hr at 160 Torr and room temp.
- B: C₂H₄ was adsorbed for 150 hr at 260 Torr and room temp.
- C: CO was adsorbed for 150 hr at 226 Torr and room temp.

In the case of O_2 adsorption (200 Torr, 150°C, 1 hr), the relative signal intensity decreased to half of that of the starting sample. (The amount of O_2 adsorbed was 0.03 cc/g-cat.)

When O_2 (150 Torr) was introduced at room temperature after the adsorption of CO at 150°C, the relative signal intensity changed from 1.4 to 0.9, as is shown in Table 2 (VC-5, 6).

ESR Spectra of V_2O_5 Supported on SiO₂. In the case of V_2O_5 (5 wt%) supported on SiO₂, no signal of ESR absorption could be observed even after evacuation at 350°C. However, the ESR signal appeared after further reduction with CO at 350°C, as is shown in Fig. 3-A; furthermore, the h.f.s. with a characteristic feature of (VO)²⁺ was observed in the ESR spectrum (Fig. 3-B) of this V_2O_5 -SiO₂, which adsorbed CO at room temperature. van Reijen and Cossee²⁾ have reported

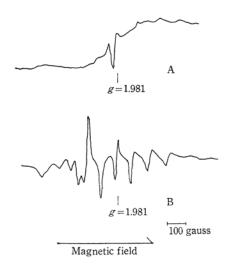
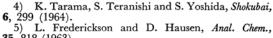


Fig. 3. ESR spectra of V₂O₅(5%)-SiO₂. The sample reduced by CO at 350°C.

CO was adsorbed at room temp. on the reduced sample.


a similar ESR spectrum of V₂O₅-SiO₂, one which was evacuated at 500°C and which was subsequently treated with H₂O at 20°C.

When C₂H₄ was adsorbed at room temperature and 150 Torr, a weak signal similar to that in Fig. 1-A appeared.

Infrared Absorption of V2O5 Adsorbing Some Gases. V₂O₅ gives infrared spectra composed of a sharp absorption at 1023 cm⁻¹ and a broad one at 830 cm⁻¹. This sharp absorption band at 1023 cm⁻¹ is assignable to the stretching vibration mode of the (V=O)3+ bond by comparison with that of VOCl₃.4,5) It has been reported that this sharp absorption shifts to a longer-wavelength region upon treatment with cyclohexane40 or after the catalyst has been used for benzene oxidation.3)

The changes in the absorption spectra by the adsorption of several gases were studied under mild conditions. Figures 4 and 5 show the changes in the spectra by the adsorption of SO2 and CO respectively.

By the adsorption of SO₂, the absorption band due to the (V=O)3+ bond became broader and the center of the absorption peak shifted from 1023 cm⁻¹ to 1005 cm, ⁻¹ and, furthermore, a weak shoulder appeared at 980—990 cm⁻¹ as is shown in curves A, B and C of Fig. 4. Almost all these changes in the IR spectra remained even after evacuation for 2 hr at 110°C, but when O2 was introduced into the cell at 75°C, the center of the absorption band returned from 1005 cm⁻¹ to 1013 cm⁻¹, as is shown in curve D of Fig. 4. On the other hand, the broad absorption band at

³⁵, 818 (1963).

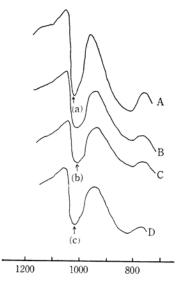


Fig. 4. IR spectra of V2O5 treated by SO2 and O_2 .

- A: V₂O₅ untreated.
- $\mathrm{V}_2\mathrm{O}_5$ treated by SO_2 at 226 Torr and 24°C for 16 hr.
- C: V2O5 treated by SO2 at 226 Torr and 50°C for 3 hr after B.
- D: V₂O₅ treated by O₂ at 342 Torr and 75°C after evacuation of SO2.
- (a) 1023 cm^{-1} , (b) 1005 cm^{-1} , (c) 1013 cm^{-1}

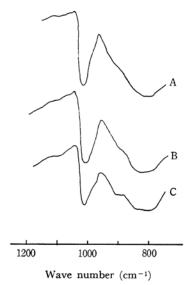


Fig. 5. IR spectra of V₂O₅ treated by CO.

- A: V₂O₅ untreated.
- B: V₂O₅ treated by CO at 157 Torr and 100°C for 1 hr.
- V₂O₅ treated by CO at 157 Torr and 140°C for 3 hr after B.

830 cm⁻¹ was almost unchanged by this treatment. When a V_2O_5 sample, freshly prepared, was

Table 2. The changes of ESR signal intensities by treatment with some gases

Sample	Condition of treatment with gases			Relative		
	Gas	Pressure	Temperature	Duration	intensity	
V-O	evacuation	evacuation for 3 hr at 350°C*				
VC-1	CO	3.9 Torr	room temp.	84 hr	1.3	
VC-2	CO	98 Torr	room temp.	55 hr	1.5	
VC-3	CO	226 Torr	room temp.	84 hr	2.0	
VC-4	VC-3 evacuated for 8 hr at room temp.				1.8	
VC-5	CO	17 Torr	150°C	17 hr	1.4	
VC-6	VC-5 treated with O2 (150 Torr) at room temp.				0.9	
VC-7	VC-6 ke	pt for 3 hr at 150°C	C		0.8	
VC-8	CO	110 Torr	150°C	17 hr	1.9	
VC-9	VC-8 evacuated for 3 hr at room temp.				1.6	
VS-1	SO_2	15.2 Torr	room temp.	7 hr	1.2	
VS-2	SO_2	163 Torr	room temp.	7 hr	1.6	
VS-3	SO_2	300 Torr	room temp.	$14 \; \mathrm{hr}$	1.4	
VS-4	VS-3 evacuated for 8 hr at room temp.					
VE-1	C_2H_4	28.2 Torr	room temp.	192 hr	1.8	
VE-2	VE-1 ev	acuated for 15 hr at	room temp.		1.6	
VE-3	C_2H_4	260 Torr	room temp.	168 hr	2.1	
VE-4	VE-3 ev	acuated for 15 hr at	room temp.		1.6	

^{*} The starting samples are V₂O₅(5 wt%) - γ-Alumina evacuated for 3 hr at 350°C in all cases and signal intensity of this sample is adopted as standard.

treated by O_2 at 100° C, no change in the spectra could be observed.

The change induced by the adsorption of CO was the same as that in the case of SO₂, but effect was smaller and a new peak, at 910 cm⁻¹, ap-

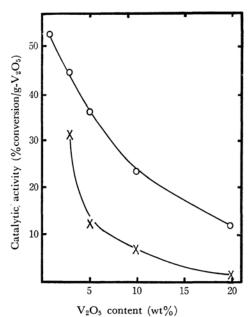


Fig. 6. Catalytic activity for CO-oxidation of supported V₂O₅.

O and \times marks stand for the catalysts supported on γ -Al₂O₃ and SiO₂ respectively.

peared at 140°C, as is shown in Fig. 5. This peak probably belongs to the absorption band of V_2O_4 .⁵⁾ Therefore, the appearance of this peak suggests that V_2O_5 was partially reduced to V_2O_4 by CO-treatment at 140°C. In the case of C_2H_4 , no change in the IR spectra could be observed upon the treatment at 25°C, but a partial reduction of V_2O_5 to V_2O_4 was observed at 80°C, as in the case of CO.

These results indicate that the reducing power of these gases increases in the order of SO_2 , CO and C_2H_1 under these experimental conditions.

Oxidation of CO with Air. Because a linear relation between the conversion $(\alpha, \%)$ of CO to CO₂ and the contact time was observed up to 30% conversion, the values of α at the same contact time were adopted as the measure of the activity.

The activities of V_2O_5 on γ -Al₂O₃ of various concentrations and V_2O_5 on SiO₂ are shown in Fig. 6. The relative activities per gram of V_2O_5 in the catalysts decreased with the increase in the concentration of V_2O_5 . This indicates that the number of effective sites of V_2O_5 is increased by dispersion on carriers.

Table 3. Reduction of catalyst by CO at 350°C for 1 hr (P_{CO} : 150 Tort)

Catalyst	Prod cc(N	uced CO ₂ TP)/g-cat.	Reduction % $(V^{4+}/V^{5+}$ initial)
V ₂ O ₅ (5%) on γ-A	l_2O_3	4.1	65	_
$\mathrm{V_2O_5(5\%)}$ on SiC	O_2	0.55	9	_

Adsorbent Adsorbate Adsorption site in surface (catalyst) (gas) (example) Metal ion at normal lattice point (V5+) n-Type semiconductor Electron donor (example, V₂O₅) Metal ion adjacent to defect of anion (V4+) (Electron acceptor Metal ion adjacent to excess anion (Ni3+) p-Type semiconductor (Electron donor (example, NiO) (Electron acceptor Metal ion at normal lattice point (Ni2+)

Table 4. The adsorption site on the metal oxide or sulfide of semiconductor

 V_2O_5 - $\gamma\text{-Al}_2O_3$ catalysts are more active than the $V_2O_5\text{-Si}O_2$ catalyst. These activities are closely correlated with the reducibilities of these catalysts by CO at $350\,^{\circ}\text{C}$, as is shown in Table 3.

Discussion

The State of Vanadium Ions in V2O5 Dispersed on Carriers. The unsupported V₂O₅ powder gave a broad single ESR signal, and the line width (ΔH_{msl}) of this absorption signal became larger at a low temperature (ΔH_{ms1} ; 90 gauss at room temperature and 180 gauss at the temperature of liquid nitrogen), as has previously been reported.1,6) In the case of V2O5 dispersed on γ-Al₂O₃, however, the h.f.s. of the ESR spectrum due to (V=O)2+ was observed. The appearance of this h.f.s. by the dispersion of V₂O₅ on a carrier seems to result from the decrease in the delocalizability of the electron associated to (V=O)2+. Therefore, it is clear that V(IV) ions in V2O5 on γ -Al₂O₃ are stabilized in the form of $(V=O)^{2+}$. However, (V=O)2+ seems not to be in the isolated state, but to be stabilized as (V=O)2+ in the thin layer of the micro crystal of V2O5 on 7-Al2O3 for the following reasons: a) Even the sample of V_2O_5 (50 wt%) on γ -Al₂O₃ gave ESR spectra with fairly well resolved h.f.s. (Fig. 1-B). In this sample, it is quite difficult to believe that (V=O)2+ ions are isolated on the surfaces of carriers. b) The observed ESR signal for V₂O₅ (5 wt%) on γ- Al_2O_3 is similar to that of $VOSO_4$ in γ - Al_2O_3 , but there is some difference in resolutions and in coupling constants between the h.f.s.'s of the two samples. Of course, the resolution of the spectrum depends on the concentration of the paramagentic species. Though the concentration of V(IV) ions is about 1% of the total vanadium in V₂O₅ (5%) on γ-Al₂O₃, and is thus so small that the interaction between paramagnetic species is negligible, the resolution of h.f.s. is not clear.

In the case of V_2O_5 on SiO_2 , the state of V(IV) is not clear, either, no signal could be observed as has been reported above; the amount of V(IV) ions in this sample may be too small to be detected by the ESR method.

On the other hand, V(V) ions (the diamagnetic

species) can not be detected by ESR measurement, and so their state in V_2O_5 is presumed indirectly from the change in the ESR signal and in the IR specta with gas adsorption or reduction.

The Adsorption Sites on V_2O_5 . When electron-donating gases, such as CO, SO₂ and C_2H_4 , were adsorbed on V_2O_5 supported on γ -Al₂O₃, the signal intensity of the ESR spectra increased and the splitting of the h.f.s. became clear. Even in the case of the sample supported on SiO₂, which gave no ESR signal after evacuation at 350°C, a weak signal with a h.f.s. identified as $(V=O)^{2+}$ appeared by the adsorption of these gases.

The growth of this signal intensity indicates an increase in $(V=O)^{2+}$. Therefore, it seems sure that these electron-donating gases are adsorbed on $(V=O)^{3+}$ bonds on the surface of a V_2O_5 crystal, and that an electron is transferred from adsorbed gas to an adsorption site, thus leading to the formation of $(V=O)^{2+}$.

On the other hand, the signal intensity became weak by O_2 adsorption. As O_2 is an electron-accepting gas, this shows that oxygen is adsorbed on $(V=O)^{2+}$ and that this adsorption site is converted to $(V=O)^{3+}$ by electron transfer.

The above model for gas adsorption is supported by the IR measurements, too. By the adsorption of CO or SO₂, the IR absorption band due to (V=O)³⁺ bond broadened, the center of the peak shifted to the red region, and a weak hump, probably due to the (V=O)²⁺ bond,⁵⁾ appeared at 980—990 cm⁻¹.

These changes in the IR spectra reflect the increase in the electron density in the V-ion of the $(V=O)^{3+}$ bond. The effect of the treatment with O_2 on the IR spectrum was the reverse of that with CO or SO_2 .

From the results of these ESR and IR measurements, it can be concluded that the adsorption sites on V_2O_5 are $(V=O)^{3+}$ for such electron-donating gases as CO, SO_2 and C_2H_4 and $(V=O)^{2+}$ for such electron-accepting gases as O_2 .

This conclusion is very probable in the light of the general rule previously proposed by one of authors⁷⁾ for the adsorption site on the metal oxide or sulfide of a semiconductor, as is shown in Table 4.

⁶⁾ K. Tarama, S. Teranishi, S. Yoshida, N. Tamura and S. Ishida, Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Sect.), 68, 1499 (1965).

⁷⁾ K. Tarama, Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Sect.), **63**, 675 (1960); Ryusan, **12**, 161 (1959).

December, 1968] 2845

The Role of the V=O Bond in Oxidation Reaction. It is generally accepted that the catalysis by V_2O_5 for oxidation reaction is effected by the oxidation-reduction mechanism in which the lattice oxygen of the catalyst is taken away by gas and the catalyst is reoxidized by O_2 .

This mechanism seems also to be supported by the finding that the activity of the catalyst in COoxidation is closely correlated with its reducibility by CO.

The present authors have presented a hypothesis that the strength of a V=O bond is a controlling factor in the activity of the catalytic oxidation.¹⁾

Recently, Hirota and his collaborators⁸⁾ studied the exchange of isotopic oxygen between CO₂ containing ¹⁸O and V₂O₅, and showed that this oxygen exchange proceeded through a surface V=O bond of V₂O₅. This finding supports the preceding hypothesis.

Therefore, it can be concluded that the V=O bond on the surface of V_2O_5 performs an important role as the adsorption site and also as the reaction site for the oxidation reaction.

⁸⁾ Y. Kera, S. Teratani and K. Hirota, This Bulletin, **40**, 2458 (1967).